

FMOD for loosely coupled
architecture.

Decoupling allows game development without requiring
prior installation of an audio engine. With the rise of remote

work, this will significantly ease your work as a developer
as you can work in parallel with the dedicated sound team.

They can manage the audio aspect in parallel without
waiting for your validation for integration.

Author :
Aude Valfroy

1

Table of Contents :

Introduction to the extension: ... 2

1. Overview of how it works: .. 2

2. Some explanations: ... 2

2. FMOD Plugin Configuration: .. 4

3. Scene Configuration: ... 4

Create the sound database for your project: ... 8

1. Create the database: ... 8

2. Setting up the scenes: ... 10

3. Additional information! ... 12

Concrete use of the extension: ... 12

1. How to use AudioClipEmitterManager: .. 12

2. Attenuation Sphere: ... 19

3. Don’t forget AudioListenerEmitter: ... 20

Everything is set up, let's start listening! ... 21

Here are a few practical use cases ... 22

1. Varying a "Built-in" parameter of FMOD Studio: ... 22

2. Play sound with Collider: ... 26

2

Introduction to the extension:
1. Overview of how it works:

2. Some explanations:

In a decoupled architecture project or with multiple sub-scenes, where each sub-scene is
dedicated to a specific functionality. The main idea is to have a sub-scene dedicated only to sound
(whether you use FMOD, WWISE or any other sound engine). This "layer" (sub-scene) is loaded
from the launch of the game in order to constantly provide audio to other sub-scenes of your game
that depend on it.

A dedicated event serves as a means of communication between the rest of the game and this
sound sub-scene.

Decoupling allows game development without requiring prior installation of an audio engine. With
the rise of remote work, this will significantly ease your work as a developer as you can work in
parallel with the dedicated sound team. They can manage the audio aspect in parallel without
waiting for your validation for integration.

This extension includes two distinct parts:

1. The first part is dedicated to the functioning of the scene dedicated to the sound design of your
project (this is where FMOD or WWISE comes in).

2. The second part serves as a communication link between the sound scene and the rest of the
game.

3

The scene called FMODLayer will allow the use of specific components to place sounds in the
scene. However, these components will not be related to the audio engine like FMOD's Event
Emitter.

The components to be used are as follows:

- AudioClipEmitterManager: This component should be attached to all elements that need
to produce sound in your scene (it replaces the FMOD Event Emitter).

- AudioListenerEmitter: This component should be attached to the main camera of your
project or the game character to hear the sounds you integrate.

These two components will be used to send event messages to the FMODLayer, which will
interpret and execute them.

Configuring your project to integrate the extension:

Once you have downloaded and imported the
extension, you should have a folder named
FMOD_for_lossely_coupled_architecture.

1. Integrate the 2 scenes into your project:

You need to integrate these two sub-scenes into your project:

LoaderScene: This scene will handle the launching and management of other scenes in addition
to the audio scene. (FMODLayer).

FMODLayer: Create the database (related to the FMOD Studio bank, the list of events, buses,
and VCAs). Its role is to execute commands like the famous PlayOneShot from FMOD via scripts;
we will not use FMOD Event Emitters. Therefore, we will enter a list of scriptable objects that we
have created (the database).

Add LoaderScene and FMODLayer in the Build Settings options, in this order:

4

Make sure LoaderScene is at the top of the list as it will load the other scenes in the project.

2. FMOD Plugin Configuration:

The FMOD plugin in your project should be configured with the Single Platform Build or Multiple
Platform Build option. We use the plugin cache to create our database.
In Streaming mode, the cache will not be created.
In a team workflow, this solution is highly recommended.

(For more information on using these parameters, please refer to the FMOD documentation
available at this address ⇒ https://www.fmod.com/docs/2.00/unity/user-guide.html#accessing-
your-fmod-studio-content)

3. Scene Configuration:

Load the LoaderScene scene:

https://www.fmod.com/docs/2.00/unity/user-guide.html#accessing-your-fmod-studio-content
https://www.fmod.com/docs/2.00/unity/user-guide.html#accessing-your-fmod-studio-content

5

Once loaded, select the GameComponent SubSceneManager in the Hierarchy section:

In the Inspector section:

• In the Scene Name Of FMOD Layer line, enter the name of the FMODLayer scene, which
contains the AudioClipEmitter and allows you to hear the audio.

• The Scene Name Of Gameplay line should be filled with the name of the main scene of
the project (Gameplay section).

6

Then, load the FMODLayer scene:

Select the DatabaseTools in the scene:

In the Inspector section, enter the following in the corresponding lines:

• Path For FMOD Event Data ⇒ he folder where the database related to FMOD calls (Sound
Designer side) will be located.
Default Folder Location:
Assets/FMOD_for_loosely_coupled_architecture/Observer/FMODEventsData

• Path For Audio Clip Data ⇒ The folder where the database related to
AudioClipEmitterData, which are the elements placed in the scene, will be located.
(Developer/Audio Programmer side)
Default Folder Location:
Assets/FMOD_for_loosely_coupled_architecture/Emitters/AudioClipData

7

In our example, we will create two folders. One folder for the developer side (AudioClipData) and
another folder for the Sound Designer side (FMODEventsData).

So, we will provide the file path for these two folders in the appropriate location:

Once these two paths are entered, save your changes.

8

Create the sound database for your project:

1. Create the database:

Load the LoaderScene scene and then run a PlayRuntime in the Unity editor. You should get a
scene with several sub-scenes:

9

Select the GameComponent DatabaseTools in the FMODLayer sub-scene. You should see the
following menu on the Inspector:

Now, check the corresponding boxes for the Database you want to create:

1. Create All Event Database: This will create scriptable objects for all the FMOD events
and snapshots, as well as their associated elements. (Please refer to the documentation
on FMOD Studio 2.02 for more information on snapshots) ⇒
https://www.fmod.com/docs/2.02/studio/mixing.html#snapshots-and-the-tracks-view)

2. Create Buses Database: This will create a list of buses that you have created in FMOD
Studio. If you prefer to directly manipulate a bus instead of a VCA in your project, you can
do so.

3. Create VCA Database: This will create a list of VCAs, which are often used for volume
control in project options.

When you check the Create All Event Database box, Unity may freeze for a moment while it
creates all the elements. Depending on the number of events in FMOD Studio and the power of
your computer, this process may take some time. (On average, it can take between 30 seconds
and 2 minutes)

The checkbox will remain unchecked after the process is complete, which is normal!

Once the database is created, you can stop the Play Runtime mode in the Unity editor.

https://www.fmod.com/docs/2.02/studio/mixing.html#snapshots-and-the-tracks-view

10

2. Setting up the scenes:

The next step will involve filling in the created database in the appropriate locations within our
scenes to establish the connections between our two scenes, FMODLayer and LoaderScene.

1. Load the LoaderScene again (if not already done), then select the _SoundLayerManager
to display the relevant parameters in the inspector. In the List of Audio Clip Data line,
choose the newly created database. There is no possibility of making a mistake.

11

Save the scene once the changes have been applied.

2. Next, load the FMODLayer scene, then select the AudioClipObserver. In the inspector
panel, you will need to provide information for three elements:

• List Of Fmod Events
• List Of Buses
• List Of VCA

Remember, save your changes.

You have finished configuring the two main scenes that allow you to listen to and control the audio
extension for managing the audio in your project.

12

3. Additional information!

Attention: Please note that these steps will need to be repeated if you delete the database from
the two folders or any part of it. This applies to situations such as making certain changes or
renaming your elements.

Attention²: Any renaming of events, parameters, buses, or VCAs will require manually
deleting the contents of the two folders containing the database in order to recreate it
properly. It's important to manage your architecture carefully from the beginning to handle
such situations effectively.

(An improvement to avoid manual deletion is currently being developed to address this aspect.)

Concrete use of the extension:

1. How to use AudioClipEmitterManager:

If you are already familiar with the FMOD plugin, you are already familiar with its usage through
the FMOD Event Emitter component. Whenever we need to trigger a sound in the scene, we
typically use the FMOD Event Emitter on a GameObject in the scene.

You will replace the usage of FMOD Event Emitter with the AudioClipEmitterManager (either as
a GameComponent with the prefab or as a regular component, depending on the triggering
method you want to achieve):

13

In our example, we will place our AudioClipEmitterManager on the elements that we want to add
sound to, in this case, the torches in this scene:

To be able to place our audio in our game scene, we will load the main scene:

Here, my main scene is called MainScene, which is the scene where the entire project is located.

14

By selecting one of the torches on the wall, I choose to open the parent prefab associated with
it so that my modifications apply to all the torches in the scene.

In the torches prefab:

15

I place my AudioClipEmitterManager:

Next, I select the AudioClipEmitterManager GameComponent to fill in some parameters in the
inspector.

We have a similar setup to an FMOD Event Emitter, which we can configure as usual.

16

Then we provide the Torches event:

Next, just like with a typical FMOD Event Emitter, we choose the options that interest us based
on the triggering method we are looking for:

17

The AudioClipEmitterManager is connected as a child of the Point Light GameComponent. We
want the audio to be heard only when the light (Point Light) is turned on. The status of the object in
the inspector will determine whether the light is on or off.

So, I choose Object Enable as the trigger parameter and Object Disable as the stop parameter.
This means that the sound will play when the torches is active (Object Enable), and if I interact
with it and turn it off, the sound will stop playing (Object Disable) at the same time.

18

The checkboxes below are related to various useful options depending on the nature of the sound
you're integrating:

• Preload Sample Data: option has the same functionality as the option with the same name
in the FMOD plugin settings. Here, you can enable it individually for each audio clip
instead of applying it to all the audio clips collectively.

• Allow Fadeout When Stopping: Allows enabling the ability to consider the ADSHR effect
created in FMOD Studio for the selected event. If it is not present, it has no effect.

• Trigger Once: option allows you to play the event only once per scene.

• Set Position: If checkbox is checked, the position of the sound source will follow the
object to which it is attached. However, it is not recommended to check this option for fixed
elements like torches.

• Set Velocity: checkbox is checked, it sends the object's velocity information to the FMOD
event. This feature requires a Rigidbody component as the parent to work properly.

• Use case: Player Footsteps.

• Override Attenuation: allows you to apply a custom attenuation sphere with different
minimum and maximum values.

• StopEventsOutdieMaxDistance: allows you to stop playing the sound when you move
outside the attenuation sphere (maximum distance value).

19

2. Attenuation Sphere:

To view the attenuation sphere of your elements in the scene, you must have the selected
AudioClipEmitterManager:

A quick search of my audio sources in the scene, a grouped selection, and I can see all my
attenuation spheres:

20

3. Don’t forget AudioListenerEmitter:

To be able to listen to your sounds, you'll need ears in your scene. That's where the
AudioEmitterListener prefab comes into play.

In most projects, you need to place the AudioListenerEmitter prefab on the MainCamera
GameObject. (Depending on the style of your game, be cautious with top-down shooters, for
example, as they may require different panning management.)
Load the main scene and locate the position of the main camera:

Drag and drop the AudioListenerEmitter prefab to the desired location:

You don’t need to do anything in the inspector.

Save Scene!

21

Everything is set up, let's start listening!
Load the LoaderScene and then start the PlayRuntime. You will find all the scenes and sub-
scenes with your sounds:

Of course, if you're a Sound Designer and you need to place your sounds in the main scene, to
avoid the hassle of loading scenes every time, you can simply drag and drop the LoaderScene
and FmodLayer as sub-scenes. This allows you to work quickly and efficiently.

22

Here are a few practical use cases
1. Varying a "Built-in" parameter of FMOD Studio:

In our example, we have a GameComponent Player that has a RigidBody.

The maximum movement speed of the character in this project is set to a value of 5.

23

I will use this information to create my parameter in FMOD Studio:

An event named Footsteps has been created:

There is a loop that will play upon game loading, and we will vary the volume based on the
player's speed.

A parameter named SpeedPlayer in the Built-in format will affect the volume in real-time.

Here's how the SpeedPlayer parameter is configured:

We provide it with a minimum and maximum value to be consistent with the configured in-game
speed variable.

24

Now that the parameter and event are created, I will proceed to build my FMOD Studio project to
update the banks that are called in the project, and then I will return to Unity to connect this event
to my player.

Additional information : Regarding the topic of built-in parameters, I refer you to the FMOD
documentation at the following address ⇒ https://www.fmod.com/docs/2.00/studio/parameters-
reference.html#built-in-parameters
You will find a comprehensive overview of the functionality of FMOD Studio's built-in parameters.

Back in Unity, we will add a component to the Player, at the same level as the RigidBody
component, which is necessary for the proper functioning of our event that needs to retrieve
information from it in order to vary our SpeedPlayer parameter.

https://www.fmod.com/docs/2.00/studio/parameters-reference.html#built-in-parameters
https://www.fmod.com/docs/2.00/studio/parameters-reference.html#built-in-parameters

25

Here's how to configure our AudioClipEmitterManager component to make everything work:

Having created an event with an infinite loop, I have chosen to start this event at the game's
startup. To ensure that the parameter receives real-time updates from the player's movement
speed, I need to have the Set Velocity checkbox checked.

Additional information: You can use the same approach on any moving element in your scene
that has a RigidBody to create a Doppler effect between the player (who is listening to the
sound) and the object that will play a sound and is moving closer or farther away from the player.

26

2. Play sound with Collider:

In our example project, we will now focus on the crystals. Each crystal in the game has a Capsule
Collider component, which is important for the following steps to work.

I want to make a slightly crystalline impact sound play when my Player collides with these
different crystals (a total of 500 different crystals). To do this, I have a simple event in FMOD
Studio with my sound asset.

27

On the crystal, you will need to provide this event in the AudioClipEmitterManager component.

We should have the following:

I choose to fill in only the Play Event field to determine when the sound will be played. I don't want
the sound to stop playing when I'm no longer colliding with the crystal, so I won't provide anything
for the Stop Event field. The maximum number of simultaneous sound instances will be defined
directly in the event created in FMOD Studio using the Max Instances parameter, which I will
also set on a bus dedicated to SFX.

Here is what these parameters look like in FMOD Studio:

	Introduction to the extension:
	1. Overview of how it works:
	2. Some explanations:
	2. FMOD Plugin Configuration:
	3. Scene Configuration:

	Create the sound database for your project:
	1. Create the database:
	2. Setting up the scenes:
	3. Additional information!

	Concrete use of the extension:
	1. How to use AudioClipEmitterManager:
	2. Attenuation Sphere:
	3. Don’t forget AudioListenerEmitter:

	Everything is set up, let's start listening!
	Here are a few practical use cases
	1. Varying a "Built-in" parameter of FMOD Studio:
	2. Play sound with Collider:

